W) Check for updates

Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems

SMASIS2016
September 28-30, 2016, Stowe, VT, USA

SMASIS2016-9071

MULTI-STABLE ORIGAMI STRUCTURE FOR CRAWLING LOCOMOTION

Alexander Pagano
University of lllinois Urbana-
Champaign
Urbana, IL USA

Brandon Leung
University of lllinois Urbana-
Champaign
Urbana, IL USA

Brian Chien
University of lllinois Urbana-
Champaign
Urbana, IL USA

Tongxi Yan A. Wissa S. Tawfick
University of lllinois Urbana- University of lllinois Urbana- University of lllinois Urbana-
Champaign Champaign Champaign

Urbana, IL USA

ABSTRACT

This paper presents the design of a bio-inspired crawling
robot comprised of bi-stable origami building blocks. This
origami structure, which is based on Kresling origami pattern,
expands and contracts through coupled longitudinal and
rotational motion similar to a screw. Controlled snapping,
facilitated by buckling instability, allows for rapid actuation as
seen in the mechanism of the hummingbird beaks or the Venus
flytrap plant, which enables them to capture insects by fast
closing actions. On a much smaller scale, a similar buckling
instability actuates the fast turning motion of uni-flagellated
bacteria. Origami provides a versatile and scale-free framework
for the design and fabrication of smart actuators and structures
based on this bi-stable actuation scheme. This paper
demonstrates how a bi-stable origami structure, having the
geometry of a polygonal base prism, can be used to actuate
crawling gait locomotion. Bi-stable origami structures exhibit
buckling instabilities associated with local bending and buckling
of their flat panels. Traditional kinematic analysis of these
structures based on rigid-plates and hinges at fold lines precludes
the shape transformation readily observed in physical models. To
capture this behavior, the model presented utilizes principles of
virtual folding to analyze and predict the kinematics of the bi-
stable origami building blocks. Virtual fold approximates panel
bending by hinged, rigid panels, which facilitates the
development of a kinematic solution via traditional rigid-plate
analysis. As such, the kinetics and stability of the structures are
investigated by assigning suitable torsional springs’ constants to
the fold lines. The results presented demonstrate the effect of
fold-pattern geometries on the chirality (i.e. the rotational
direction that results in expansion of the structure), and snapping
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behavior of the bi-stable origami structure. The crawling robot
is presented as a case study for the use of this origami structure
in various locomotion applications. The robot is comprised of
two nested origami ‘building blocks’ with opposite chirality,
such that their actuations are coupled rotationally. A servo motor
is used to rotationally actuate the expansion and contraction of
both the internal and external origami structures to achieve
locomotion. Inclined barbs that extrude from the edges of the
polygonal base engage with the ground surface, thus
constraining the expansion or contraction to forward locomotion,
as desired. The robot fabrication methods are presented and
results from experiments performed on various surfaces are also
discussed.

1. INTRODUCTION

As autonomous systems are further integrated into everyday
scenarios, there is a prevailing need to make these systems more
adaptive, less obtrusive, and more independent. To address this
need, we seek inspiration from natural systems which overcome
an incredible variety of challenges with simple, adaptive
solutions. For example, rapid motion of plants demonstrates how
categorically slow moving systems have adaptively developed
mechanisms that allow for fast motion [1]. Much of the motion
in plants is hydraulically driven, nastic motion (there is no
directional correlation between stimulus and response) which is
controlled through differential internal cell (turgor) pressure [1].
The time limiting factor of such motion is the transport of water
through the porous, elastic plant tissue which is largely affected
by the length-scale of the desired motions [1]. This fundamental
limitation for large, fast motion in plants can be overcome
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through the coupling of mechanical instabilities and slow
actuation over short length-scales.

Many diverse systems in nature depend on the controlled
actuation of flexible structures through buckling instabilities for
rapid motion in both predation and locomotion [2]-[4]. While
buckling is typically associated with failure in mechanical
systems, we’ve seen that the manipulation of bi-stable or
multistable features allows for motion over large scales that
would otherwise not be possible from other natural actuation
schemes due to shortcomings in strength, speed or flexibility. For
example, the snap-buckling associated with the rapid closure of
Venus flytraps is due to the reconfiguration from convex to
concave curvature of its leaves. This motion is driven by a
controlled change in the principle curvature of the leaf through
local variation in turgor pressure that, due to geometric
constraints, is coupled to a stretching deformation mode that
stores elastic energy. This coupling allows for small
perturbations in curvature to result in large, rapid motion of the
leaf [2]. A similar mechanism is used in the beaks of
hummingbirds to produce a fast-closing action unattainable by
direct muscular control. The pre-configuration of an
anisotropically compliant bone in the hummingbird beak allows
for smooth flexion to a strained position which can then be
triggered to facilitate the fast expenditure of elastic energy as the
beak snaps back to its closed equilibrium state [4]. Buckling
instability has also been shown to be a dominant feature of
locomotion for uni-flagellated bacteria, suggesting that the bi-
stable actuation scheme is viable independent of scale [3]. In this
paper, we utilize origami as a platform for the scale-free
investigation of actuation based on the buckling instabilities of
thin, flexible features.

The outstanding number of natural systems which utilize
folding—in conjunction with the low material cost and
theoretical freedom of 2D materials—identifies origami as a
nearly barrier-free platform for biomimetic design. A wealth of
useful systems is discovered when the conditions that result in
natural folding are investigated. The folding mechanisms of
pine-cones, hawkmoths, poppy petals, and horse-chestnut leaves
have all resulted in useful origami structures, among which are
the ubiquitous Miura-ori pattern [5] and the Kresling pattern [6]
which is investigated here. These structures have broad-reaching
applications in deployable and rigidizable systems as well as
multi-functional systems providing both structure and actuation
as discussed in the case study herein. Through the manipulation
of “defect states” created by the buckling of thin sheets, origami
also provides the framework for the development of
reprogrammable, mechanical metamaterials [7]. Simplistic tools
for the modeling of these structures such as rigid-panel analysis
and the principles of virtual folds enable facile investigation of
their properties so that the development of useful structures is
straightforward [8].

The ability to produce a functional and geometrically
complex 3D mechanical system from a flat sheet introduces
exciting opportunities in the field of robotics for remote,
autonomously deployable systems or low cost integrated
locomotion. Self-folding origami robots have demonstrated the

viability of folded monolithic structures for a variety of tasks
[9]-[11]. For example, Rus, Wood and co-workers demonstrated
how self-assembly can be used to create a deployable robot that
folds itself from a flat sheet and walks away [10] and the
diversity of origami patterns which are useful for locomotion [9].
The reconfigurable nature of origami systems often allows for a
multitude of potential functional folding schemes within a given
structure. Moreover, in a monolithic system where load-bearing
structure and locomotion are facilitated by the same components,
this re-configurability lends itself to multi-model and multi-
functional design. For example, the Tribot ‘robogami’ is capable
of moving via both jumping and crawling locomotion by the
same actuation mechanism [12] which provides more
opportunities for success when navigating unpredictable terrains.
Multi-functional design facilitated by folded structures has the
potential to simplify robotics design through the integrated use
of coupled structural and actuation mechanisms while decreasing
both weight and fabrication costs.

In this study we demonstrate the design, analysis and
fabrication of a bi-stable origami structure inspired by the
Kresling pattern. Through the coupling of rotational and linear
motion, this structure uses buckling instabilities to accomplish
large-stroke snapping motion from relatively small inputs. We
demonstrate the functional application of this mechanism in the
case study with a crawling robot that utilizes monolithic, multi-
functional design to realize locomotion from a single motor. The
remainder of this paper is organized as follows: Section 2
presents the design and mechanics of the origami structures;
Sections 3 and 4 detail the kinematics of the origami structure
represented as rigid panels; Section 5 presents the crawling robot
design and experimental results as a case study.

2. DESIGN AND MECHANICS OF THE ORIGAMI

Geometric Description of the origami structure

The origami structure can be uniquely defined by the three
parameters, n, R, and A, which are the number of sides of the
basal polygon, the circumradius of the basal polygon, and the
angle ratio, respectively [13]. The angle ratio, 1, determines the
aspect ratio of the structure and the degree of transformation
during folding. From these parameters, the remaining fold
lengths and angles are easily determined geometrically from the
generic crease pattern (CP) (Fig. 1A) and basic polygon
relations. The governing equations used to create the CP for a
specific structure are given in Eqgs. 1-3. The valley crease length,
[, is determined through trigonometric analysis of the folded
tower in the ‘closed’ position (Fig. 1C) so that all fold lines and
vertices lie in the same plane (Eq. 4).

The construction of the structure from the flat CP (Fig. 1A)
is accomplished by folding and rolling it into polygonal prism
such that points A and B overlap with A" and B*, which results in
the expanded or ‘open’ structure (Fig. 1B). When a force is
applied on the top of the structure (while allowing free rotation),
it contracts while exhibiting a snapping motion from the open to
closed positions as demonstrated in Fig. 2. This transformation
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Fig. 1 — Geometry of the origami structure. A) The crease pattern (CP) for the polygonal prism origami structure shown in B which is derived
from the Kresling Pattern [6]. Mountain folds are shown as solid, red lines and valley folds are shown in dashed blue. The schematics define the
geometric parameters: # is the number of sides, a is the polygon side length, / is the diagonal valley-crease length, y is the side panel length, the
angle 6 is half the internal angle of the basal polygon, and 4, the angle ratio, is a metric of transformation between open and closed states and can
vary between 0.5 and 1 for the bistable behavior. B) A hexagonal-based Kresling origami is constructed from the shaded pattern in A where n=6
and A=0.8. Variation in circumradius R results in scaling the size of this origami. Also shown is rotation angle, a, for rotation of the top polygon
about the dashed axis shown in B. C) Top down view of the structure shown in B while in its closed position. The crease length of the diagonal
valley-fold, /, is determined trigonometrically from this schematic. The internal radius, x, of the cavity formed by the valley-folds while in the
closed position is also determined from this view. The rotation angle is measured from the x-axis to the vector R as shown. The x-axis is chosen to

intersect the first vertex of the bottom polygon, labeled A.

is non-rigid in that, in addition to the local folding of the
mountain and valley crease lines, elastic deformation of the flat
panels is required to complete the transformation. For simplicity
in discussion we will refer to the transition from open to closed
positions as ‘contraction’ and the inverse transformation from
closed to open ‘expansion’. Depending on the value of A, when
the origami is fully folded, an internal cavity is formed with some
internal radius, x. This internal radius is characteristic of the
polygon formed by the valley folds when in the closed position,
and is determined trigonometrically from the same closed
configuration used to determine the crease length, / (Eq. 5, see
Fig. 1C). The cavity allows for the concentric placement of two

origami structures so that one rests in the cavity of the other
without interference during expansion and contraction as
demonstrated in the case study, described in Section 5. The
geometric relations describing the origami are listed in Eq. 1-5.

a = 2R sin (g) (D

y = (I + a? — 2la cos(19))/? 2
n(n—2)

0= @
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l=2Rcos(6(1— 1)) “

x = Rsin(6(1 - 1)) Q)

When the origami is constructed from the CP into the open
position (Fig. 1B), its configuration is expressed by its height, H,
and the rotation angle, o, which describes the rotation of the top
polygon with respect to a frame fixed to the bottom polygon. The
chirality of the structure, defined here as the direction of rotation,
a, which results in expansion of the structure, can be changed by
taking the mirror image of the CP in Fig. 1A reflected about a
vertical axis. The origami structure shown in Fig. 1B has
negative chirality but positive and negative chirality are
mathematically indistinguishable when considering the behavior
of the structure during expansion or contraction.

Foldability Analysis for rigid origami

The CP for a single origami building block shown in Fig.
1A is comprised of one row of n parallelogram panels. This CP
is rigid foldable, which indicates that the polygonal prism can be
constructed from a flat CP by simply bending the fold lines
without deforming the flat panels. This rigid foldability can be
confirmed by analyzing the number of degrees of freedom
(DOF) for the CP,

DOF =N -3 6)

where N is the number of mountain or valley folds that meet at a
vertex [14]. To construct a single unit cell (one row from Fig.
1A), 4 fold lines intersect at vertex D: the two horizontal

E

Height, # [mm]
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Open Rotation, « [rad] Closed

Fig. 2 — Change in origami height, H, calculated as a function of
rotation angle, o, to demonstrate contraction of the origami. Height
is plotted for values of angle ratio, /, spanning its range of 0.5 <
A<1.0 to demonstrate the effect of 1 on the extent of
transformation during contraction. Note that as /1 approaches 0.5,
origami height and rotation vary less between initial (open) and
final (closed) states than for larger values of /.

mountain-folds labeled a, the diagonal mountain-fold, y, and the
diagonal valley-fold, /. Therefore each vertex of the CP has 1
DOF and the prism construction is rigidly foldable [14].
Following the creasing of mountain and valley folds, the vertices
corresponding to the 1% and n' panel (for example A,B and A*,B*
in Fig. 1A) are overlapped to create the basal polygon. Notably,
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Fig. 3 — A) The origami structure shown in the open position, where the vertices and representative vectors used in the vector loop equation are
shown. The thick black lines represent the n' panel, of which the triangular ‘unit cell’ ABD is sufficient to determine the motion of the structure
during contraction or expansion. All other positions can be determined through arbitrary rotations. The structure shown represents R =30 mm, A =
0.8 and n = 6. B) Theoretical strain in vector Rp4 as a function of rotation is plotted here for several values of angle ratio, 4, to demonstrate the
effect of A on the bistable behavior of the tower. Theoretical strain is given here as a metric for the extent of deformation required for expansion or
contraction of the structure between kinematically allowable open and closed positions. As the angle ratio, /A, increases, the theoretical strain
increases so that more deformation is required for higher values of angle ratio.
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for 2>0.5, the overlap can be done in such a way to construct an
expanded polygonal prism or a flat polygon (inset Fig. 2). Once
the vertices are fixed to one another (e.g. by gluing), the formed
origami structure is kinematically rigid in both of these
configurations. This additional constraint, created by gluing the
vertices, fully defines the position of each vertex with respect to
its neighbor so that the structure no longer has available degrees
of freedom. In other words, if the panels are truly rigid, the
expanded polygonal prism having A>0.5 cannot be contracted
and vice versa. If the panels are bendable, the polygonal prism
exhibits snapping between the expanded and contracted
configurations. However, it is not readily apparent from the CP
what the values of height, H, and rotation, o, are at these
positions.

3. KINEMATIC ANALYSIS OF RIGID PANELS AND
FOLDING JOINTS

To determine the configuration of the folded origami
structure, a vector loop equation for the closed loop, Re4, Rac,
Rpc, Rp4, was solved numerically using a custom Python
program.

Rpgy —Rpc+ Rpc —Rpp =0 (7)
Rgs =R(—1+cosa)X+Rsinay+HZ ®)
Rpc =RcosaX+ Rsinay+0Z7 )

2m\ 2wy N
RDC=Rcos(a+7)x+Rsin(0{+7)y+Oz (10)

_ 2m\\ . ) 2wy
RDA—R(—1+cos(a+7))x+Rsm(a+7)y (11
+HZ

The following constraints were used to attain the numerical
solution for height and rotation in the initial position, i.e. open:
1) The angle between vectors Rep and Rpa is 10

Rgp - Rps = (I X a) cos(A0) (12)

2) The fold AD is a rigid line represented by a vector Roa
with magnitude |

”RDA” =1 (13)

Using the Newton-Raphson method, the constraint
equations are numerically solved by systemically varying the
components of the vector loop vectors until the correct solution
was found. In this way, the initial rotation angle was determined
by solving the first constraint, which was then used in
conjunction with the second constraint to determine the
structure’s initial height. Once the open configuration was
defined, the final rotation was determined geometrically from the
closed position where H = () by definition. As previously stated,
folding from the open to closed position requires some non-rigid
deformation of the CP. To investigate the behavior of the
structure during expansion and contraction we mathematically

allowed the length of vector Re4 (equivalent to Rpr) to vary
throughout folding. This introduces an additional degree of
freedom that allows the model to smoothly transition from open
to closed positions, thus conceptually simplifying the expression
of deformation to a single dimension. Contraction was then
simulated by stepping from initial to final rotation angles with
equal step size. Height was then determined at each rotational
step to fully define the configuration of the structure during
expansion or contraction. The parameter of ‘rotation’ was
specifically chosen as the input here since it is a relevant input
for the motor-driven locomotion of the case study.

The degree of deformation required for folding, which, as
discussed later, is a direct measure of the bistability of the
system, can then be quantified by calculating the theoretical
change in free length Rp,4 (Fig. 3). This additional degree of
freedom is realized in physical paper models through the use of
relief cuts along folds AB . These cuts allow the length of R4 to
vary through the bending of adjacent panels so that corners A and
B contract in the z-direction. This bending describes the motion
of physical models better than simply strained links and can be
modeled as the bending of the triangular panels ABD and AED on
either side of the diagonal valley-fold AD.

4. KINEMATIC ANALYSIS INCLUDING VIRTUAL FOLDS

To account for panel bending, a “virtual fold” can be
mathematically created between 2 vertices across a bending
panel [8], [15]. Virtual fold assumes that mathematical fold lines
can be added to represent the “hidden” degrees of freedom
associated with the out of plane bending modes in kinematically
rigid panels. To capture the bending behavior observed
experimentally, virtual folds are placed along Rrp and Rar for
each panel as shown in Fig. 4. In this way, each panel was
divided into triangular facets AFD, BFD, AF'D, and AF'E whose
surface normals are parallel when panels are flat (i.e. open and
closed configurations, Fig. 2) and have a non-zero scalar product
during bending (Fig. 5). Triangular facets AF'D and AF'E can be
represented as rotations of facets AFD and BFD and are therefore
mathematically redundant. To simplify this discussion we will
only consider the bending of virtual fold FD.

The position of the virtual fold was chosen to emulate the
conditions observed in physical models, but could be given any
arbitrary position. At each step during contraction, the vertex of
the virtual fold line which lies at point D on the top polygon
remains fixed, while vertex at ' is free to move according to the
following constraints:

1) The sides of the virtual facets must sum to the crease
length, vy, as defined in the CP (Fig. 1A) and Eq. 2. Each
side has fixed length according to the rigid-panel
assumption.

IRFa + Rgpll =y (14)
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2) The virtual fold length is fixed throughout contraction.
This fold length, lg, is determined from the open
configuration (Fig. 3A)

IRprll = la (15)

3) The extent of out of plane deflection is determined
trigonometrically from triangle ABF where the change in
length Rga is given by the strain (Fig. 3B) while the
lengths of Rer and Rra are fixed.

These constraint equations were numerically solved using
the Newton-Raphson method as before. This allows for the
position of each vertex to be determined at every step of
expansion or contraction. From this, the fold angles can be
determined by the scalar product of the surface normals of each
facet (Fig. 5).

For the n™ panel of an n-sided polygonal prism represented
as ABDE we need only consider the fold angles of the
folds, BD, FD and AD to characterize the entire structure since all
other folds are rotationally symmetric. To analyze the potential
energy associated with the origami snapping motion, torsional
springs can be attached to the virtual fold lines to calculate the
restoring force resulting from the bending of each triangular
panel. This kinetic treatment is used to investigate the bistability
of the structure.

Analysis of the Origami Bistability

By treating fold lines as torsional springs where the crease
lines given by the CP have a different spring constant than the
virtual folds which approximate panel bending, all of the
material properties can be condensed into a single non-
dimensional parameter, namely the fold stiffness ratio, which is
the ratio of torsional spring constants associated with virtual
folds and creases (k5 and k. respectively). These spring constants
can be experimentally measured. For the results presented here,
the torsional spring constants determined experimentally by
Silverberg et al. for 120 1b paper were used. These value were
k., = 170 + 20 mN m/rad for creases and k, = 6 Nm/
rad for virtual folds [8].

The development of elastic energy during expansion or
contraction as determined through the use of virtual folds and
appropriate torsional springs can then be used to study the
bistability of folded origami structures. The fold energy is given
by the product of torsional spring potential and the length of the
fold. For each fold, the associated folding energy is calculated
and summed according to Eq. 16. The equilibrium position for
the torsional spring potential is assumed to be the open
configuration, and is represented by the subscript o. The total
elastic energy of the origami structure is determined from Eq. 16
and plotted as a function of rotation in Fig. 6 to investigate the
bistability of the structure during expansion and contraction.

n
k 2 2
Utotat = fz Za(HBD,i - HBD,O) + I(HAD,L' - QAD,O)
i=1 (16)

n
kp
+ 72 2l Prp,”
i=1

Fig. 4 — Accounting for panel bending by introducing virtual
folds. During contraction, deformation is facilitated by out-of-
plane bending of the triangular panels ABD and AED. The bending
of these panels is treated rigidly through the introduction of virtual

folding lines along FD and AF'.

200 T T T T T T

180 | E

100
/

Fold Angle [deg]
3

_50 1 1 1 1
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Rotation, a [rad]

Fig. 5 — Characteristic fold angles as a function of rotation,
determined from the scalar product of their respective surface
normal vectors. Fold angles can be considered the angle between
the facets on either side of the fold line. The fold angle, ro,
corresponds to virtual fold lines FD and AF' . The virtual fold
angle is initially and terminally 180 degrees due to the unbent
structure in the open and closed configurations. The fold angles
D and Bap of creases BD (same as AE) and AD take their initial
values due to the geometric constraints of the structure in the open
configuration. The negative angles are caused by the intersection
of virtual facets.

The results from Eq. 16 are shown in Fig. 6. The origami
structures have a maximum potential energy at a certain rotation
angle which corresponds to the snapping motion. The bistability
is more pronounced for higher aspect ratio polygonal prisms
(defined by larger A values). Importantly, since the deformations
that occur are elastic, the system is able to repeatedly move from
one kinematical configuration to another through bi-stable
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snapping motion. In physical models, the thickness of folded
layers prevents the system from accessing its co-planar, closed
configuration. Instead, a force balance is established resulting in
an equilibrium position at some nonzero height that can be
conceptually correlated to the closed configuration of the
structure. For the structure to be bi-stable, the elastic energy of
the open and closed equilibrium configurations must be
minimum energy states of the transformation. The energy
required to produce the kinematically necessary deformations
(i.e. panel bending) is then the barrier energy that separates the
two equilibrium positions. It can be seen from Fig. 6A that bi-
stable behavior begins to occur at low values of A near its
minimum of 0.5. However as A increases to its maximum, more

12 T T T T

Virtual Folds
- (Creases
- Total

-
o
T

Elastic Energy U [mJ]
(o]

0 1 1
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Rotation, « [rad]
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-
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1.2 T T T T T T T T

1.0 F

0.8 |

0.6

0.4} -

Elastic Energy U [mJ]

0.2} N i
7
s N\
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Fig. 6 — A) Elastic energy contributions from creased folds and
virtual folds are plotted as a function of energy. The total elastic
energy associated with folding, as determined by Eq. 16, is also
shown. In this case, A is set equal to 0.51, and the ratio of kn/Kc
leads to an origami structure stable only in the expanded state.
Here rotation angle increase corresponds to contraction of the
origami, and creased lines have folding energies that are zero when
in the open configuration. B) The total elastic energy from Eqg. 16
is plotted as a function of rotation to demonstrate that bi-stability
is more pronounced for larger angle ratios.

deformation is required and therefore the behavior is
increasingly bi-stable. The onset of bistability is a function of the
fold stiffness ratio and the origami structure parameters », R, and
A. Since the material properties dictate the fold stiffness ratio and
we are free to specify the structure parameters to fit our purposes,
this structure serves as a tunable bi-stable system created from a
flat sheet.

The energy as a function of rotation can then be used to
determine the torque associated with holding the structure in a
certain configuration. This was accomplished using the force
energy relation in Eq. 17. The work required for each rotational
step is then given by Eq. 18. This can then be related to the
rotational and linear stiffness of the structure by Eqs. 19 and 20.

aou
= —— 17
T % (17)
W = 1Aa (18)
2W
Kiotationar = (19)
(Aa)?
2W
linear = (20)
(AH)?

The rotational and linear stiffness of the structure during
contraction are shown in Fig. 7. Regions of negative stiffness
demonstrate the bistability of the structure, where a small
perturbation carries the structure through a large displacement.
In summary, this origami pattern, based on the Kresling
pattern, demonstrates bi-stable expansion and contraction
facilitated by the buckling of thin panels. This structure can be
uniquely specified by the three parameters n, R and A which are
respectively the number of sides of the basal polygon, the
circumradius of the basal polygon and the angle ratio. Through
these parameters and the selection of the fold stiffness ratio by
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Fig. 7 — Rotational and linear stiffness as determined by Eq. 19
and Eq. 20 plotted as a function of rotation. The dashed line shows
rotational stiffness and is plotted on the left axis (scaled by 106)
while the solid line shows linear stiffness and is plotted on the right
axis (scaled by 10%). The upwards hook in linear stiffness is caused
by the residual restoring force in the creased fold-lines.
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material choice, the folding behavior of the structure can be fully
determined and exploited. As a demonstrative example of the
applications of this structure, we present a case study wherein
this origami pattern is used for both structure and locomotion of
a crawling robot.

5. CASE STUDY: CRAWLING ROBOT

Bio-Inspired Robot for Crawling Locomotion

The bi-stable origami structure previously discussed is used
as a ‘building block’ to construct a simple robot with crawling
gait locomotion. The robot is assembled from two nested stacks
of origami ‘building blocks’ with opposite chirality, such that the
rotation of internal structure with respect to the external one
causes expansion or contraction of the assembly. These building
blocks are stacked concentrically as shown in Fig. 8A so that the
internal and external structures are free to rotate coaxially
without interference. This is ensured by choosing the values of
n, R and A for each structure so that the internal radius of the
external structure, x, is greater than the circumradius of the
internal structure (see Fig. 1). The anterior ends (furthest from
the servo) of each tower are fixed to each other with a torque-
limited coupling which allows for the expansion of the internal
origami without risking damage due to over-rotation. On the
posterior polygon of the external tower, a servo motor is mounted
whose horn is fixed to the internal tower. Positive rotation of this
servo horn results in the expansion of the internal tower, while
the reaction torque on the external tower aids in this expansion
due to their opposite chirality. Rotational actuation enables the
controlled snapping of the internal origami which allows it to act
as a telescopic boom which extends and contracts the outer
origami. The internal origami structure is chosen to exhibit
pronounced bi-stability through the selection of a high angle
ratio (4 > 0.8), while the external tower has a lower angle ratio
(A= 0.6) so it has a smoother transition between open and closed
positions.

The expansion and contraction induces forward motion
resembling the peristaltic locomotion of an earthworm, however,
for this structure, linear expansion is not accompanied by a radial
contraction as seen in peristalsis. Since the radius is constant
during expansion, additional structures can be added to the
origami towers to facilitate the appropriate weight distribution
for crawling locomotion without changing the motion of the
towers. To realize rotational actuation, a continuous rotation
servo motor, servo motor holder, and servo horn adapter were
fixed to the posterior end, which necessitated additional
structures on the anterior end for balance (see Fig. 8). Weight
holders were attached to each side so ball bearings, acting as
counter weights, could be added as needed. A servo controller is
used to control the angular displacement of the servo horn as well
as the rotational speed. The total amount of rotation required to
fully expand the structure is a function of the origami parameters,
n, R, and A, as well as the number of blocks in the internal and
external towers. For the robots shown in Fig. 9, more than one
revolution is required for the full expansion of the structure,
therefore a continuous rotation servo was required for complete

Fig. 8 — A) Exploded isometric view of CAD model of robot
prototype with components labeled: 1) Servo motor, 2) Barbs, 3)
Weight holder, 4) Internal origami blocks, 5) External origami
blocks, 6) Counterweight, 7) Bard holder B) CAD model showing
robot in contracted/closed state C) CAD model showing robot in
expanded/open state.

actuation. The controller was used to manually expand and
contract the structure between the open (Fig. 9D&F) and closed
(Fig. 9E&G) positions.

Barbs were used to systematically constrain the anterior and
posterior ends of the robot during expansion and contraction to
gain forward locomotion. These barbs were fabricated from 24-
gauge stainless steel wire and paper. SIM card holders were used
as barb housings to enable the quick change of barb designs to
test different orientations. Barb tips were bent towards the
posterior end—opposite the direction of motion—to only allow
for forward motion and prevent sliding backwards (see Fig. 9).
In this case study, the robot prototype was tested with different
barb configuration on various surfaces to determine the optimal
condition for locomotion. The three configurations tested were
the following: robot with no barbed feet, barbed feet at every
other edge, and barbed feet at every edge (as pictured in Fig. 9A).
The test surfaces included a smooth table top surface, a plywood
surface, and a coarse sandpaper surface. It was shown that
regardless of surface, the prototype with no barbed feet did not
demonstrate forward motion and instead, expanded and
contracted in a stationary position. However, the use of barbs
facilitated forward motion by providing sufficient uni-
directional friction for the expansion to cause the anterior end to
slip while the posterior end remained fixed. When the test
surface was too rough (i.e. the coarse sandpaper), the barbs were
not able to sufficiently overcome the frictional forces regardless
of configuration, and travel was limited. It was found that the
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highest net forward displacement was on the plywood surface
with the robot configured with barbs at every other edge. Testing
was done using the paper origami robot prototype shown in Fig.
9A, B, D, and E. This robot is 9 cm long when fully contracted
(Fig. 9E) and 16 cm long when fully expanded (Fig. 9D). The
ideal gait would result in displacement equaling the difference
between open and closed states so that all expansion results in
forward progress. For this robot prototype, the maximum
theoretical displacement per cycle would be 7 cm. Under the
optimal testing conditions, the robot crawled forward 12.7
centimeters in three servo control cycles (open and close 3 times
each) or 4.23 cm per cycle corresponding to an efficiency of
60%.

While inexpensive and readily available, paper doesn’t offer
the functional lifespan desired in most robotics applications.
Additional prototypes were fabricated with more robust

materials to withstand more cycles before failure. These
prototypes were created from layers of cellulose acetate and
natural rubber latex film. Cellulose acetate sheets were taped to
a cardboard support, then laser cut according to the pattern
derived from the origami crease pattern (Fig. 10A). Top and
bottom polygons should also be laser cut, though a thicker
material may be desired to provide sufficient rigidity. Natural
rubber latex film was then glued to the cut acetate sheet, taking
care to avoid bubbles under the latex layer. Using the polygons,
the acetate and latex panels were then rolled and glued to the top
and bottom as shown in Fig. 10B. The resulting building block
(Fig. 10C) can then be stacked and glued to form the origami
structures as desired. The newly fabricated robot will be tested
to compare its performance to the paper-based robot.

Fig. 9 — A) Robot prototype posterior side. Showing servo mounting and barb configuration. B) Paper origami robot prototype fully assembled C)
Cellulose Acetate + Latex origami robot prototype fully assembled D) Paper origami robot prototype in open position E) Paper origami robot
prototype in closed position F) Acetate and Latex origami robot prototype in open position G) Acetate and Latex origami robot prototype in closed

position
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Fig. 10 — A) Cellulose acetate sheet is taped to cardboard then
laser-cut to produce “fold lines”. B) Latex film is glued to acetate
sheet and the structure is rolled and fixed to the top and bottom
polygons C) The resulting latex and acetate structure can fold
without relief cuts

SUMMARY

This manuscript presented the design and analysis of a bi-
stable origami structure and its use in actuating a crawling robot
gait. We presented the full analysis of the kinematics of the
origami structure, as well as the potential energy evolution
associated with its bi-stable snapping motion. This was achieved
by applying the concept of virtual folds to account for panel
bending. A simple application of the origami structure was
realized through creating a crawling gate by concentrically
nesting two origami structures with opposite chirality. The
origami structures were actuated with a servo motor. Forward
motion was achieved by adding inclined barbs on the
circumference of the robot body to break the symmetry and
ensure positive forward displacement and rotation. Due to
backward slip, the gait achieved was 60% of the theoretical
maximum. Further optimization of the friction interaction
between the origami and the ground will enhance the gait quality.
Future work will include additional consideration of the
reconfigurability of this structure to realize multiple gaits from
the same design as well as further studies of the latex and
cellulose acetate prototypes.
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