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ABSTRACT 
 

This paper presents the design of a bio-inspired crawling 

robot comprised of bi-stable origami building blocks. This 

origami structure, which is based on Kresling origami pattern, 

expands and contracts through coupled longitudinal and 

rotational motion similar to a screw. Controlled snapping, 

facilitated by buckling instability, allows for rapid actuation as 

seen in the mechanism of the hummingbird beaks or the Venus 

flytrap plant, which enables them to capture insects by fast 

closing actions. On a much smaller scale, a similar buckling 

instability actuates the fast turning motion of uni-flagellated 

bacteria.  Origami provides a versatile and scale-free framework 

for the design and fabrication of smart actuators and structures 

based on this bi-stable actuation scheme. This paper 

demonstrates how a bi-stable origami structure, having the 

geometry of a polygonal base prism, can be used to actuate 

crawling gait locomotion.  Bi-stable origami structures exhibit 

buckling instabilities associated with local bending and buckling 

of their flat panels. Traditional kinematic analysis of these 

structures based on rigid-plates and hinges at fold lines precludes 

the shape transformation readily observed in physical models. To 

capture this behavior, the model presented utilizes principles of 

virtual folding to analyze and predict the kinematics of the bi-

stable origami building blocks. Virtual fold approximates panel 

bending by hinged, rigid panels, which facilitates the 

development of a kinematic solution via traditional rigid-plate 

analysis. As such, the kinetics and stability of the structures are 

investigated by assigning suitable torsional springs’ constants to 

the fold lines. The results presented demonstrate the effect of 

fold-pattern geometries on the chirality (i.e. the rotational 

direction that results in expansion of the structure), and snapping 

behavior of the bi-stable origami structure.  The crawling robot 

is presented as a case study for the use of this origami structure 

in various locomotion applications.  The robot is comprised of 

two nested origami ‘building blocks’ with opposite chirality, 

such that their actuations are coupled rotationally. A servo motor 

is used to rotationally actuate the expansion and contraction of 

both the internal and external origami structures to achieve 

locomotion. Inclined barbs that extrude from the edges of the 

polygonal base engage with the ground surface, thus 

constraining the expansion or contraction to forward locomotion, 

as desired. The robot fabrication methods are presented and 

results from experiments performed on various surfaces are also 

discussed. 

 
1. INTRODUCTION 
 

As autonomous systems are further integrated into everyday 

scenarios, there is a prevailing need to make these systems more 

adaptive, less obtrusive, and more independent. To address this 

need, we seek inspiration from natural systems which overcome 

an incredible variety of challenges with simple, adaptive 

solutions. For example, rapid motion of plants demonstrates how 

categorically slow moving systems have adaptively developed 

mechanisms that allow for fast motion [1]. Much of the motion 

in plants is hydraulically driven, nastic motion (there is no 

directional correlation between stimulus and response) which is 

controlled through differential internal cell (turgor) pressure [1]. 

The time limiting factor of such motion is the transport of water 

through the porous, elastic plant tissue which is largely affected 

by the length-scale of the desired motions [1]. This fundamental 

limitation for large, fast motion in plants can be overcome 
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through the coupling of mechanical instabilities and slow 

actuation over short length-scales.  

Many diverse systems in nature depend on the controlled 

actuation of flexible structures through buckling instabilities for 

rapid motion in both predation and locomotion [2]–[4]. While 

buckling is typically associated with failure in mechanical 

systems, we’ve seen that the manipulation of bi-stable or 

multistable features allows for motion over large scales that 

would otherwise not be possible from other natural actuation 

schemes due to shortcomings in strength, speed or flexibility. For 

example, the snap-buckling associated with the rapid closure of 

Venus flytraps is due to the reconfiguration from convex to 

concave curvature of its leaves. This motion is driven by a 

controlled change in the principle curvature of the leaf through 

local variation in turgor pressure that, due to geometric 

constraints, is coupled to a stretching deformation mode that 

stores elastic energy. This coupling allows for small 

perturbations in curvature to result in large, rapid motion of the 

leaf [2]. A similar mechanism is used in the beaks of 

hummingbirds to produce a fast-closing action unattainable by 

direct muscular control. The pre-configuration of an 

anisotropically compliant bone in the hummingbird beak allows 

for smooth flexion to a strained position which can then be 

triggered to facilitate the fast expenditure of elastic energy as the 

beak snaps back to its closed equilibrium state [4]. Buckling 

instability has also been shown to be a dominant feature of 

locomotion for uni-flagellated bacteria, suggesting that the bi-

stable actuation scheme is viable independent of scale [3]. In this 

paper, we utilize origami as a platform for the scale-free 

investigation of actuation based on the buckling instabilities of 

thin, flexible features.  

 The outstanding number of natural systems which utilize 

folding—in conjunction with the low material cost and 

theoretical freedom of 2D materials—identifies origami as a 

nearly barrier-free platform for biomimetic design. A wealth of 

useful systems is discovered when the conditions that result in 

natural folding are investigated. The folding mechanisms of 

pine-cones, hawkmoths, poppy petals, and horse-chestnut leaves 

have all resulted in useful origami structures, among which are 

the ubiquitous Miura-ori pattern [5] and the Kresling pattern [6] 

which is investigated here. These structures have broad-reaching 

applications in deployable and rigidizable systems as well as 

multi-functional systems providing both structure and actuation 

as discussed in the case study herein. Through the manipulation 

of “defect states” created by the buckling of thin sheets, origami 

also provides the framework for the development of 

reprogrammable, mechanical metamaterials [7]. Simplistic tools 

for the modeling of these structures such as rigid-panel analysis 

and the principles of virtual folds enable facile investigation of 

their properties so that the development of useful structures is 

straightforward [8]. 

 The ability to produce a functional and geometrically 

complex 3D mechanical system from a flat sheet introduces 

exciting opportunities in the field of robotics for remote, 

autonomously deployable systems or low cost integrated 

locomotion. Self-folding origami robots have demonstrated the 

viability of folded monolithic structures for a variety of tasks 

[9]–[11]. For example, Rus, Wood and co-workers demonstrated 

how self-assembly can be used to create a deployable robot that 

folds itself from a flat sheet and walks away [10] and the 

diversity of origami patterns which are useful for locomotion [9]. 

The reconfigurable nature of origami systems often allows for a 

multitude of potential functional folding schemes within a given 

structure. Moreover, in a monolithic system where load-bearing 

structure and locomotion are facilitated by the same components, 

this re-configurability lends itself to multi-model and multi-

functional design. For example, the Tribot ‘robogami’ is capable 

of moving via both jumping and crawling locomotion by the 

same actuation mechanism [12] which provides more 

opportunities for success when navigating unpredictable terrains. 

Multi-functional design facilitated by folded structures has the 

potential to simplify robotics design through the integrated use 

of coupled structural and actuation mechanisms while decreasing 

both weight and fabrication costs. 

 In this study we demonstrate the design, analysis and 

fabrication of a bi-stable origami structure inspired by the 

Kresling pattern. Through the coupling of rotational and linear 

motion, this structure uses buckling instabilities to accomplish 

large-stroke snapping motion from relatively small inputs. We 

demonstrate the functional application of this mechanism in the 

case study with a crawling robot that utilizes monolithic, multi-

functional design to realize locomotion from a single motor. The 

remainder of this paper is organized as follows: Section 2 

presents the design and mechanics of the origami structures; 

Sections 3 and 4 detail the kinematics of the origami structure 

represented as rigid panels; Section 5 presents the crawling robot 

design and experimental results as a case study.  

 
2. DESIGN AND MECHANICS OF THE ORIGAMI  
 
Geometric Description of the origami structure 

The origami structure can be uniquely defined by the three 

parameters, n, R, and λ, which are the number of sides of the 

basal polygon, the circumradius of the basal polygon, and the 

angle ratio, respectively [13]. The angle ratio, λ, determines the 

aspect ratio of the structure and the degree of transformation 

during folding. From these parameters, the remaining fold 

lengths and angles are easily determined geometrically from the 

generic crease pattern (CP) (Fig. 1A) and basic polygon 

relations. The governing equations used to create the CP for a 

specific structure are given in Eqs. 1-3. The valley crease length, 

l, is determined through trigonometric analysis of the folded 

tower in the ‘closed’ position (Fig. 1C) so that all fold lines and 

vertices lie in the same plane (Eq. 4).  

The construction of the structure from the flat CP (Fig. 1A) 

is accomplished by folding and rolling it into polygonal prism 

such that points A and B overlap with A* and B*, which results in 

the expanded or ‘open’ structure (Fig. 1B). When a force is 

applied on the top of the structure (while allowing free rotation), 

it contracts while exhibiting a snapping motion from the open to 

closed positions as demonstrated in Fig. 2. This transformation 
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is non-rigid in that, in addition to the local folding of the 

mountain and valley crease lines, elastic deformation of the flat 

panels is required to complete the transformation. For simplicity 

in discussion we will refer to the transition from open to closed 

positions as ‘contraction’ and the inverse transformation from 

closed to open ‘expansion’. Depending on the value of λ, when 

the origami is fully folded, an internal cavity is formed with some 

internal radius, x. This internal radius is characteristic of the 

polygon formed by the valley folds when in the closed position, 

and is determined trigonometrically from the same closed 

configuration used to determine the crease length, l (Eq. 5, see 

Fig. 1C). The cavity allows for the concentric placement of two 

origami structures so that one rests in the cavity of the other 

without interference during expansion and contraction as 

demonstrated in the case study, described in Section 5. The 

geometric relations describing the origami are listed in Eq. 1-5. 

𝑎 = 2𝑅 sin (
𝜋

𝑛
) (1) 

𝑦 = (𝑙2 + 𝑎2 − 2𝑙𝑎 cos(𝜆𝜃))1 2⁄  (2) 

𝜃 =
𝜋(𝑛 − 2)

2𝑛
 (3) 

Fig. 1 – Geometry of the origami structure. A)  The crease pattern (CP) for the polygonal prism origami structure shown in B which is derived 

from the Kresling Pattern [6]. Mountain folds are shown as solid, red lines and valley folds are shown in dashed blue. The schematics define the 

geometric parameters: n is the number of sides, a is the polygon side length, l is the diagonal valley-crease length, y is the side panel length, the 

angle θ is half the internal angle of the basal polygon, and λ, the angle ratio, is a metric of transformation between open and closed states and can 

vary between 0.5 and 1 for the bistable behavior. B)  A hexagonal-based Kresling origami is constructed from the shaded pattern in A where n=6 

and 𝜆=0.8. Variation in circumradius R results in scaling the size of this origami. Also shown is rotation angle, α, for rotation of the top polygon 

about the dashed axis shown in B. C) Top down view of the structure shown in B while in its closed position. The crease length of the diagonal 

valley-fold, l, is determined trigonometrically from this schematic. The internal radius, x, of the cavity formed by the valley-folds while in the 

closed position is also determined from this view. The rotation angle is measured from the x-axis to the vector R as shown. The x-axis is chosen to 

intersect the first vertex of the bottom polygon, labeled A.  

A 

B C 
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𝑙 = 2𝑅 cos(𝜃(1 − 𝜆)) (4) 

𝑥 = 𝑅 sin(𝜃(1 − 𝜆)) (5) 

 

When the origami is constructed from the CP into the open 

position (Fig. 1B), its configuration is expressed by its height, H, 

and the rotation angle, α, which describes the rotation of the top 

polygon with respect to a frame fixed to the bottom polygon. The 

chirality of the structure, defined here as the direction of rotation, 

α, which results in expansion of the structure, can be changed by 

taking the mirror image of the CP in Fig. 1A reflected about a 

vertical axis. The origami structure shown in Fig. 1B has 

negative chirality but positive and negative chirality are 

mathematically indistinguishable when considering the behavior 

of the structure during expansion or contraction.  

 
Foldability Analysis for rigid origami 

The CP for a single origami building block shown in Fig. 

1A is comprised of one row of n parallelogram panels. This CP 

is rigid foldable, which indicates that the polygonal prism can be 

constructed from a flat CP by simply bending the fold lines 

without deforming the flat panels. This rigid foldability can be 

confirmed by analyzing the number of degrees of freedom 

(DOF) for the CP, 

𝐷𝑂𝐹 = 𝑁 − 3 (6) 
where N is the number of mountain or valley folds that meet at a 

vertex [14]. To construct a single unit cell (one row from Fig. 

1A), 4 fold lines intersect at vertex D: the two horizontal 

mountain-folds labeled a, the diagonal mountain-fold, y, and the 

diagonal valley-fold, l. Therefore each vertex of the CP has 1 

DOF and the prism construction is rigidly foldable [14]. 

Following the creasing of mountain and valley folds, the vertices 

corresponding to the 1st and nth panel (for example A,B and A*,B* 

in Fig. 1A) are overlapped to create the basal polygon. Notably, 

Fig. 3 – A) The origami structure shown in the open position, where the vertices and representative vectors used in the vector loop equation are 

shown. The thick black lines represent the nth panel, of which the triangular ‘unit cell’ 𝐴𝐵𝐷തതതതതത is sufficient to determine the motion of the structure 

during contraction or expansion. All other positions can be determined through arbitrary rotations. The structure shown represents R = 30 mm, λ = 

0.8 and n = 6. B) Theoretical strain in vector RBA as a function of rotation is plotted here for several values of angle ratio, λ, to demonstrate the 

effect of λ on the bistable behavior of the tower. Theoretical strain is given here as a metric for the extent of deformation required for expansion or 

contraction of the structure between kinematically allowable open and closed positions. As the angle ratio, λ, increases, the theoretical strain 

increases so that more deformation is required for higher values of angle ratio. 

 

A B 

Fig. 2 – Change in origami height, H, calculated as a function of 

rotation angle, α, to demonstrate contraction of the origami. Height 

is plotted for values of angle ratio, λ, spanning its range of 0.5 <
𝜆 ≤ 1.0 to demonstrate the effect of λ on the extent of 

transformation during contraction. Note that as λ approaches 0.5, 

origami height and rotation vary less between initial (open) and 

final (closed) states than for larger values of λ.  
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for λ>0.5, the overlap can be done in such a way to construct an 

expanded polygonal prism or a flat polygon (inset Fig. 2). Once 

the vertices are fixed to one another (e.g. by gluing), the formed 

origami structure is kinematically rigid in both of these 

configurations. This additional constraint, created by gluing the 

vertices, fully defines the position of each vertex with respect to 

its neighbor so that the structure no longer has available degrees 

of freedom. In other words, if the panels are truly rigid, the 

expanded polygonal prism having λ>0.5 cannot be contracted 

and vice versa. If the panels are bendable, the polygonal prism 

exhibits snapping between the expanded and contracted 

configurations. However, it is not readily apparent from the CP 

what the values of height, H, and rotation, α, are at these 

positions. 

 

3. KINEMATIC ANALYSIS OF RIGID PANELS AND 
FOLDING JOINTS 
 

To determine the configuration of the folded origami 

structure, a vector loop equation for the closed loop, RBA, RBC, 

RDC, RDA, was solved numerically using a custom Python 

program.  

𝑹𝑩𝑨 − 𝑹𝑩𝑪 + 𝑹𝑫𝑪 − 𝑹𝑫𝑨 = 0 (7) 

𝑹𝑩𝑨 = 𝑅(−1 + cos 𝛼)𝑥̂ + 𝑅 sin 𝛼 𝑦̂ + 𝐻 𝑧 ̂ (8) 

𝑹𝑩𝑪 = 𝑅 cos 𝛼 𝑥̂ + 𝑅 sin 𝛼 𝑦̂ + 0 𝑧 ̂ (9) 

𝑹𝑫𝑪 = 𝑅 cos (𝛼 +
2𝜋

𝑛
) 𝑥̂ + 𝑅 sin (𝛼 +

2𝜋

𝑛
) 𝑦̂ + 0 𝑧 ̂ (10) 

𝑹𝑫𝑨 = 𝑅 (−1 + cos (𝛼 +
2𝜋

𝑛
)) 𝑥̂ + 𝑅 sin (𝛼 +

2𝜋

𝑛
) 𝑦̂

+ 𝐻 𝑧 ̂ 
(11) 

 

The following constraints were used to attain the numerical 

solution for height and rotation in the initial position, i.e. open: 

1) The angle between vectors RBD and RDA is λθ 

 

𝑹𝑩𝑫 ⋅ 𝑹𝑫𝑨 = (𝑙 × 𝑎) cos(𝜆𝜃) (12) 

2) The fold 𝐴𝐷 is a rigid line represented by a vector RDA 

with magnitude l 

 

‖𝑹𝑫𝑨‖ = 𝑙 (13) 

Using the Newton-Raphson method, the constraint 

equations are numerically solved by systemically varying the 

components of the vector loop vectors until the correct solution 

was found. In this way, the initial rotation angle was determined 

by solving the first constraint, which was then used in 

conjunction with the second constraint to determine the 

structure’s initial height. Once the open configuration was 

defined, the final rotation was determined geometrically from the 

closed position where H = 0 by definition. As previously stated, 

folding from the open to closed position requires some non-rigid 

deformation of the CP. To investigate the behavior of the 

structure during expansion and contraction we mathematically 

allowed the length of vector RBA (equivalent to RDE) to vary 

throughout folding. This introduces an additional degree of 

freedom that allows the model to smoothly transition from open 

to closed positions, thus conceptually simplifying the expression 

of deformation to a single dimension. Contraction was then 

simulated by stepping from initial to final rotation angles with 

equal step size. Height was then determined at each rotational 

step to fully define the configuration of the structure during 

expansion or contraction. The parameter of ‘rotation’ was 

specifically chosen as the input here since it is a relevant input 

for the motor-driven locomotion of the case study.  

The degree of deformation required for folding, which, as 

discussed later, is a direct measure of the bistability of the 

system, can then be quantified by calculating the theoretical 

change in free length RBA (Fig. 3). This additional degree of 

freedom is realized in physical paper models through the use of 

relief cuts along folds 𝐴𝐵 . These cuts allow the length of RBA to 

vary through the bending of adjacent panels so that corners A and 

B contract in the z-direction. This bending describes the motion 

of physical models better than simply strained links and can be 

modeled as the bending of the triangular panels 𝐴𝐵𝐷 and 𝐴𝐸𝐷 on 

either side of the diagonal valley-fold 𝐴𝐷.  

 

4. KINEMATIC ANALYSIS INCLUDING VIRTUAL FOLDS 
 

To account for panel bending, a “virtual fold” can be 

mathematically created between 2 vertices across a bending 

panel [8], [15]. Virtual fold assumes that mathematical fold lines 

can be added to represent the “hidden” degrees of freedom 

associated with the out of plane bending modes in kinematically 

rigid panels. To capture the bending behavior observed 

experimentally, virtual folds are placed along RFD and RAF’ for 

each panel as shown in Fig. 4. In this way, each panel was 

divided into triangular facets 𝐴𝐹𝐷, 𝐵𝐹𝐷, 𝐴𝐹′𝐷, and 𝐴𝐹′𝐸 whose 

surface normals are parallel when panels are flat (i.e. open and 

closed configurations, Fig. 2) and have a non-zero scalar product 

during bending (Fig. 5). Triangular facets 𝐴𝐹′𝐷 and 𝐴𝐹′𝐸 can be 

represented as rotations of facets 𝐴𝐹𝐷 and  𝐵𝐹𝐷 and are therefore 

mathematically redundant. To simplify this discussion we will 

only consider the bending of virtual fold 𝐹𝐷. 

The position of the virtual fold was chosen to emulate the 

conditions observed in physical models, but could be given any 

arbitrary position. At each step during contraction, the vertex of 

the virtual fold line which lies at point D on the top polygon 

remains fixed, while vertex at F is free to move according to the 

following constraints: 

1) The sides of the virtual facets must sum to the crease 

length, y, as defined in the CP (Fig. 1A) and Eq. 2. Each 

side has fixed length according to the rigid-panel 

assumption.  

‖𝑹𝑭𝑨 + 𝑹𝑩𝑭‖ = 𝑦 (14) 
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2) The virtual fold length is fixed throughout contraction. 

This fold length, ld, is determined from the open 

configuration (Fig. 3A) 

‖𝑹𝑫𝑭‖ = 𝑙𝑑 (15) 

3) The extent of out of plane deflection is determined 

trigonometrically from triangle 𝐴𝐵𝐹 where the change in 

length RBA is given by the strain (Fig. 3B) while the 

lengths of RBF and RFA are fixed. 

These constraint equations were numerically solved using 

the Newton-Raphson method as before. This allows for the 

position of each vertex to be determined at every step of 

expansion or contraction. From this, the fold angles can be 

determined by the scalar product of the surface normals of each 

facet (Fig. 5). 

For the nth panel of an n-sided polygonal prism represented 

as 𝐴𝐵𝐷𝐸 we need only consider the fold angles of the 

folds, 𝐵𝐷, 𝐹𝐷 and 𝐴𝐷 to characterize the entire structure since all 

other folds are rotationally symmetric. To analyze the potential 

energy associated with the origami snapping motion, torsional 

springs can be attached to the virtual fold lines to calculate the 

restoring force resulting from the bending of each triangular 

panel. This kinetic treatment is used to investigate the bistability 

of the structure. 

 
Analysis of the Origami Bistability 

By treating fold lines as torsional springs where the crease 

lines given by the CP have a different spring constant than the 

virtual folds which approximate panel bending, all of the 

material properties can be condensed into a single non-

dimensional parameter, namely the fold stiffness ratio, which is 

the ratio of torsional spring constants associated with virtual 

folds and creases (kb and kc respectively). These spring constants 

can be experimentally measured. For the results presented here, 

the torsional spring constants determined experimentally by 

Silverberg et al. for 120 lb paper were used. These value were 

𝑘𝑐  =  170 ± 20 𝑚𝑁 𝑚/𝑟𝑎𝑑 for creases and 𝑘𝑏  =  6 𝑁 𝑚/
𝑟𝑎𝑑 for virtual folds [8]. 

The development of elastic energy during expansion or 

contraction as determined through the use of virtual folds and 

appropriate torsional springs can then be used to study the 

bistability of folded origami structures. The fold energy is given 

by the product of torsional spring potential and the length of the 

fold. For each fold, the associated folding energy is calculated 

and summed according to Eq. 16. The equilibrium position for 

the torsional spring potential is assumed to be the open 

configuration, and is represented by the subscript 0. The total 

elastic energy of the origami structure is determined from Eq. 16 

and plotted as a function of rotation in Fig. 6 to investigate the 

bistability of the structure during expansion and contraction. 

 The results from Eq. 16 are shown in Fig. 6. The origami 

structures have a maximum potential energy at a certain rotation 

angle which corresponds to the snapping motion. The bistability 

is more pronounced for higher aspect ratio polygonal prisms 

(defined by larger λ values). Importantly, since the deformations 

that occur are elastic, the system is able to repeatedly move from 

one kinematical configuration to another through bi-stable 

𝑈𝑡𝑜𝑡𝑎𝑙 =
𝑘𝑐

2
∑ 2𝑎(𝜃𝐵𝐷,𝑖 − 𝜃𝐵𝐷,0)

2
+ 𝑙(𝜃𝐴𝐷,𝑖 − 𝜃𝐴𝐷,0)

2
𝑛

𝑖=1

+
𝑘𝑏

2
∑ 2𝑙𝑑𝜓𝐹𝐷,𝑖

2

𝑛

𝑖=1

 

(16) 

Fig. 4 – Accounting for panel bending by introducing virtual 

folds. During contraction, deformation is facilitated by out-of-

plane bending of the triangular panels 𝐴𝐵𝐷തതതതതത and 𝐴𝐸𝐷തതതതതത. The bending 

of these panels is treated rigidly through the introduction of virtual 

folding lines along  𝐹𝐷 and  𝐴𝐹′.  

Fig. 5 – Characteristic fold angles as a function of rotation, 

determined from the scalar product of their respective surface 

normal vectors. Fold angles can be considered the angle between 

the facets on either side of the fold line. The fold angle, ψFD, 

corresponds to virtual fold lines  𝐹𝐷 and  𝐴𝐹′ . The virtual fold 

angle is initially and terminally 180 degrees due to the unbent 

structure in the open and closed configurations. The fold angles 

θBD and θAD of creases  𝐵𝐷 (same as 𝐴𝐸) and  𝐴𝐷 take their initial 

values due to the geometric constraints of the structure in the open 

configuration. The negative angles are caused by the intersection 
of virtual facets. 
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snapping motion. In physical models, the thickness of folded 

layers prevents the system from accessing its co-planar, closed 

configuration. Instead, a force balance is established resulting in 

an equilibrium position at some nonzero height that can be 

conceptually correlated to the closed configuration of the 

structure. For the structure to be bi-stable, the elastic energy of 

the open and closed equilibrium configurations must be 

minimum energy states of the transformation. The energy 

required to produce the kinematically necessary deformations 

(i.e. panel bending) is then the barrier energy that separates the 

two equilibrium positions. It can be seen from Fig. 6A that bi-

stable behavior begins to occur at low values of λ near its 

minimum of 0.5. However as λ increases to its maximum, more 

deformation is required and therefore the behavior is 

increasingly bi-stable. The onset of bistability is a function of the 

fold stiffness ratio and the origami structure parameters n, R, and 

λ. Since the material properties dictate the fold stiffness ratio and 

we are free to specify the structure parameters to fit our purposes, 

this structure serves as a tunable bi-stable system created from a 

flat sheet. 

 The energy as a function of rotation can then be used to 

determine the torque associated with holding the structure in a 

certain configuration. This was accomplished using the force 

energy relation in Eq. 17. The work required for each rotational 

step is then given by Eq. 18. This can then be related to the 

rotational and linear stiffness of the structure by Eqs. 19 and 20. 

τ = −
𝜕𝑈

𝜕𝛼
 (17) 

𝑊 = 𝜏Δ𝛼 (18) 

𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
2𝑊

(Δ𝛼)2
 (19) 

𝐾𝑙𝑖𝑛𝑒𝑎𝑟 =
2𝑊

(Δ𝐻)2
 (20) 

The rotational and linear stiffness of the structure during 

contraction are shown in Fig. 7. Regions of negative stiffness 

demonstrate the bistability of the structure, where a small 

perturbation carries the structure through a large displacement.  

 In summary, this origami pattern, based on the Kresling 

pattern, demonstrates bi-stable expansion and contraction 

facilitated by the buckling of thin panels. This structure can be 

uniquely specified by the three parameters n, R and λ which are 

respectively the number of sides of the basal polygon, the 

circumradius of the basal polygon and the angle ratio. Through 

these parameters and the selection of the fold stiffness ratio by 

Fig. 6 – A) Elastic energy contributions from creased folds and 

virtual folds are plotted as a function of energy. The total elastic 

energy associated with folding, as determined by Eq. 16, is also 

shown. In this case, λ is set equal to 0.51, and the ratio of kb/kc 

leads to an origami structure stable only in the expanded state. 

Here rotation angle increase corresponds to contraction of the 

origami, and creased lines have folding energies that are zero when 

in the open configuration. B) The total elastic energy from Eq. 16 

is plotted as a function of rotation to demonstrate that bi-stability 

is more pronounced for larger angle ratios.  

A 

B 

λ = 0.51 

Fig. 7 – Rotational and linear stiffness as determined by Eq. 19 

and Eq. 20 plotted as a function of rotation. The dashed line shows 

rotational stiffness and is plotted on the left axis (scaled by 106) 

while the solid line shows linear stiffness and is plotted on the right 

axis (scaled by 103).  The upwards hook in linear stiffness is caused 
by the residual restoring force in the creased fold-lines. 
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material choice, the folding behavior of the structure can be fully 

determined and exploited. As a demonstrative example of the 

applications of this structure, we present a case study wherein 

this origami pattern is used for both structure and locomotion of 

a crawling robot. 
 
5. CASE STUDY: CRAWLING ROBOT  
 
Bio-Inspired Robot for Crawling Locomotion 

The bi-stable origami structure previously discussed is used 

as a ‘building block’ to construct a simple robot with crawling 

gait locomotion. The robot is assembled from two nested stacks 

of origami ‘building blocks’ with opposite chirality, such that the 

rotation of internal structure with respect to the external one 

causes expansion or contraction of the assembly. These building 

blocks are stacked concentrically as shown in Fig. 8A so that the 

internal and external structures are free to rotate coaxially 

without interference. This is ensured by choosing the values of 

n, R and λ for each structure so that the internal radius of the 

external structure, x, is greater than the circumradius of the 

internal structure (see Fig. 1). The anterior ends (furthest from 

the servo) of each tower are fixed to each other with a torque-

limited coupling which allows for the expansion of the internal 

origami without risking damage due to over-rotation. On the 

posterior polygon of the external tower, a servo motor is mounted 

whose horn is fixed to the internal tower. Positive rotation of this 

servo horn results in the expansion of the internal tower, while 

the reaction torque on the external tower aids in this expansion 

due to their opposite chirality. Rotational actuation enables the 

controlled snapping of the internal origami which allows it to act 

as a telescopic boom which extends and contracts the outer 

origami. The internal origami structure is chosen to exhibit 

pronounced bi-stability through the selection of a high angle 

ratio (λ ≥ 0.8), while the external tower has a lower angle ratio 

(λ = 0.6) so it has a smoother transition between open and closed 

positions. 

 The expansion and contraction induces forward motion 

resembling the peristaltic locomotion of an earthworm, however, 

for this structure, linear expansion is not accompanied by a radial 

contraction as seen in peristalsis. Since the radius is constant 

during expansion, additional structures can be added to the 

origami towers to facilitate the appropriate weight distribution 

for crawling locomotion without changing the motion of the 

towers. To realize rotational actuation, a continuous rotation 

servo motor, servo motor holder, and servo horn adapter were 

fixed to the posterior end, which necessitated additional 

structures on the anterior end for balance (see Fig. 8). Weight 

holders were attached to each side so ball bearings, acting as 

counter weights, could be added as needed. A servo controller is 

used to control the angular displacement of the servo horn as well 

as the rotational speed. The total amount of rotation required to 

fully expand the structure is a function of the origami parameters, 

n, R, and λ, as well as the number of blocks in the internal and 

external towers. For the robots shown in Fig. 9, more than one 

revolution is required for the full expansion of the structure, 

therefore a continuous rotation servo was required for complete 

actuation. The controller was used to manually expand and 

contract the structure between the open (Fig. 9D&F) and closed 

(Fig. 9E&G) positions.  

Barbs were used to systematically constrain the anterior and 

posterior ends of the robot during expansion and contraction to 

gain forward locomotion. These barbs were fabricated from 24-

gauge stainless steel wire and paper. SIM card holders were used 

as barb housings to enable the quick change of barb designs to 

test different orientations. Barb tips were bent towards the 

posterior end—opposite the direction of motion—to only allow 

for forward motion and prevent sliding backwards (see Fig. 9).  

In this case study, the robot prototype was tested with different 

barb configuration on various surfaces to determine the optimal 

condition for locomotion. The three configurations tested were 

the following: robot with no barbed feet, barbed feet at every 

other edge, and barbed feet at every edge (as pictured in Fig. 9A). 

The test surfaces included a smooth table top surface, a plywood 

surface, and a coarse sandpaper surface. It was shown that 

regardless of surface, the prototype with no barbed feet did not 

demonstrate forward motion and instead, expanded and 

contracted in a stationary position. However, the use of barbs 

facilitated forward motion by providing sufficient uni-

directional friction for the expansion to cause the anterior end to 

slip while the posterior end remained fixed. When the test 

surface was too rough (i.e. the coarse sandpaper), the barbs were 

not able to sufficiently overcome the frictional forces regardless 

of configuration, and travel was limited. It was found that the 

Fig. 8 – A) Exploded isometric view of CAD model of robot 

prototype with components labeled: 1) Servo motor, 2) Barbs, 3) 

Weight holder, 4) Internal origami blocks, 5) External origami 

blocks, 6) Counterweight, 7) Bard holder B) CAD model showing 

robot in contracted/closed state  C) CAD model showing robot in 

expanded/open state. 

A 

B C 
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highest net forward displacement was on the plywood surface 

with the robot configured with barbs at every other edge. Testing 

was done using the paper origami robot prototype shown in Fig. 

9A, B, D, and E. This robot is 9 cm long when fully contracted 

(Fig. 9E) and 16 cm long when fully expanded (Fig. 9D). The 

ideal gait would result in displacement equaling the difference 

between open and closed states so that all expansion results in 

forward progress. For this robot prototype, the maximum 

theoretical displacement per cycle would be 7 cm. Under the 

optimal testing conditions, the robot crawled forward 12.7 

centimeters in three servo control cycles (open and close 3 times 

each) or 4.23 cm per cycle corresponding to an efficiency of 

60%. 

While inexpensive and readily available, paper doesn’t offer 

the functional lifespan desired in most robotics applications. 

Additional prototypes were fabricated with more robust 

materials to withstand more cycles before failure. These 

prototypes were created from layers of cellulose acetate and 

natural rubber latex film. Cellulose acetate sheets were taped to 

a cardboard support, then laser cut according to the pattern 

derived from the origami crease pattern (Fig. 10A). Top and 

bottom polygons should also be laser cut, though a thicker 

material may be desired to provide sufficient rigidity. Natural 

rubber latex film was then glued to the cut acetate sheet, taking 

care to avoid bubbles under the latex layer. Using the polygons, 

the acetate and latex panels were then rolled and glued to the top 

and bottom as shown in Fig. 10B. The resulting building block 

(Fig. 10C) can then be stacked and glued to form the origami 

structures as desired. The newly fabricated robot will be tested 

to compare its performance to the paper-based robot.  

 

Fig. 9 – A) Robot prototype posterior side. Showing servo mounting and barb configuration. B) Paper origami robot prototype fully assembled C) 

Cellulose Acetate + Latex origami robot prototype fully assembled D) Paper origami robot prototype in open position E) Paper origami robot 

prototype in closed position F) Acetate and Latex origami robot prototype in open position G) Acetate and Latex origami robot prototype in closed 

position 

A 

B C 

D E 

F G 
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SUMMARY 
 
 This manuscript presented the design and analysis of a bi-

stable origami structure and its use in actuating a crawling robot 

gait. We presented the full analysis of the kinematics of the 

origami structure, as well as the potential energy evolution 

associated with its bi-stable snapping motion. This was achieved 

by applying the concept of virtual folds to account for panel 

bending. A simple application of the origami structure was 

realized through creating a crawling gate by concentrically 

nesting two origami structures with opposite chirality. The 

origami structures were actuated with a servo motor. Forward 

motion was achieved by adding inclined barbs on the 

circumference of the robot body to break the symmetry and 

ensure positive forward displacement and rotation. Due to 

backward slip, the gait achieved was 60% of the theoretical 

maximum. Further optimization of the friction interaction 

between the origami and the ground will enhance the gait quality. 

Future work will include additional consideration of the 

reconfigurability of this structure to realize multiple gaits from 

the same design as well as further studies of the latex and 

cellulose acetate prototypes. 
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Fig. 10 – A) Cellulose acetate sheet is taped to cardboard then 

laser-cut to produce “fold lines”. B) Latex film is glued to acetate 

sheet and the structure is rolled and fixed to the top and bottom 

polygons C) The resulting latex and acetate structure can fold 

without relief cuts 
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