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ABSTRACT

This paper presents a stability model for the wing leading
edge spar of a test ornithopter. The long-term goal of this
research effort is to passively improve the performance of
ornithopters during steady level flight by implementing a
set of wing kinematics found in natural flyers. The desired
kinematics is achieved by inserting a compliant
mechanism called a compliant spine into the wing leading
edge spar to mimic the function of an avian wrist. The
stiffness of the compliant spine is time varying and given
the nature of flapping flight, it is periodic. Introducing a
variable stiffness compliant mechanism into the leading
edge spar of the ornithopter affects its structural stability.
Therefore, a stability analysis is required. In order to start
the stability analysis, an analytical model of the ornithopter
wing leading edge spar with a compliant spine inserted in
is necessary. In the model, the compliant spine is modeled
as a torsional spring with a sinusoidal stiffness function.
Moreover, the equations of motion of the wing leading
edge spar-spine system can be written in the form of non-
homogeneous Mathieu’s equations, which has well-known
stability criteria. The analytical system response is then
validated using experimental data taken at NASA Langley
Research Center. Results show that the analytical spine
angular deflection agrees with the experimental angular
deflection data within 11%. Stability was then
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demonstrated using both analytical and graphical proving
that the response of leading edge spar with a compliant
spine design inserted at 37% of the wing half span is
bounded.

I. INTRODUCTION

During the last few decades, flapping wing Unmanned
Aerial Vehicles (UAVSs), or ornithopters, have shown the
potential for advancing and revolutionizing UAV
performance in both the civil and military sectors[1]. An
ornithopter is unique in that it can combine the agility and
maneuverability of rotary wing aircraft with excellent
performance in low Reynolds number flight regimes.
These traits could yield optimized performance over
multiple mission scenarios. Nature achieves such
performance in birds using wing gaits that are optimized
for a particular flight condition [2],[3]. The desired bio-
inspired kinematics that we want to implement on a test
ornithopter to improve steady level flight is known as the
Continuous Vortex Gait (CVG). A detailed discussion of
the kinematics of the CVG can be found in [2] and [3]. The
advantage of using the CVG is that it is an avian gait that
can be implemented passively and requires motion in only
one major joint, namely the wrist. The desired bending
kinematics of the CVG can be achieved by inserting a
contact-aided compliant mechanism called a compliant
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spine into the wing leading edge spar to mimic the function
of an avian wrist. The compliant spine is inserted in the
leading edge spar of the test ornithopter wings at 37% of
the wing half span, as shown in Figure 1. The compliant
spine is designed to be flexible during the upstroke, while
remaining stiff during the downstroke, as shown in Figure
2. References 4, 5, and 6 detail the design optimization of
the compliant spine. The stiffhess of the compliant spine is
time varying and, given the nature of steady-level flapping
flight, it is also periodic. Introducing a variable stiffness
compliant mechanism into the leading edge spar of the
ornithopter affects its structural stability. A stability
analysis is thus required [7, 8].

Improved
Performance

Compliant Spine

Figure 1. The compliant spine is inserted into the
leading edge spar to mimic the function of an avian

wrist.
Stiff
Downstroke
Flexible ! ! !
Upstroke

Figure 2. The desired stiffness of the compliant spine
is nonlinear. It is stiff in the downstroke, similar to a
rigid spar, and flexible in the upstroke, similar to a
torsional spring.

This paper presents a structural stability model for the wing
leading edge spar of a test ornithopter. Modeling the wing
leading edge spar with a compliant spine inserted in it
yields linear time periodic equations of motion in the form
of non-homogeneous Mathieu’s equations. The model uses
Floquet’s decomposition [8, 9] to determine the stability of
the leading edge (LE) spar using graphical and analytical
methods with various compliant spine designs inserted in
it. The remainder of the paper is organized as follows:

Section 2 presents the equations of motion for the leading
edge spar, Section 3 explains the experimental validation
for the model, Section 4 discusses the stability analysis,
and Section 5 includes conclusions and future work.

2. LEADING EDGE SPAR EQUATIONS OF
MOTION

2.1 Research Platform Specifications

The leading edge spar modeled in this paper is the main
spar of an avian scale flapping wing un-manned air vehicle.
Figure 3 shows a picture of the research platform and Table
1 includes the specifications [10]. The ornithopter wings
consist of the leading edge spar, a wing membrane, a
diagonal spar and five finger spars as shown in Figure 4.
The leading edge spar is the spar connected to the wing
root and the flapping mechanism. It is a unidirectional
carbon fiber rod with a 3.96 m diameter.

Figure 3. Test Platform

Table 1. Ornithopter specification that are common
across all configurations

Specification Value
Span 1.07m
Flapping Rate 4-6Hz
Speed 25-85mfs
Max. Chord 0.28 m
Range 0.8 km
Wing Stroke Angle 1.17 rad
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Wing Membrane

Finger Spar

Figure 4: Top view of the research platform wings with its
components labeled.

The compliant spine is designed to mimic the function of
an avian wrist, thus it is inserted in the leading edge. The
compliant spine is attached to the carbon fiber spar using
six 5-40 bolts and a Delrin collar, as shown in Figure 5.

Delrin Collar

2.5" Compliant Spine

Carbon Fiber Spar Compliant Hinges Compliant Joint

Figure 5. Compliant spine assembly components

2.2 Leading Edge Spar Model

The leading edge spar is modeled as two rigid rods. One
rod is inboard to the compliant spine and the other is
outboard to the compliant spine. The boundary conditions
for these rods are shown in Figure 6. The inboard rod has
a pinned boundary condition at the root and is connected
to the torsional spring on the other end. The outboard rod
has a free boundary condition at the wing tip and is
connected to the torsional spring on one end. The
compliant spine is modeled as a torsional spring with a
sinusoidal stiffness function. The torsional stiffness of the
spring representing the compliant spine is described as:

kr = (k, + kp) — kwos(?) (1)

where,

k, = ky (2)

_kd_ku

ky, = > 3)

In the equations above, k, and k, are the upstroke and
downstroke stiffness of the compliant spine in Newton-
meter per radian, respectively, t is time in seconds, and T
is the period of one wing beat cycle. The values of k, and
k, are determined based on the compliant spine design
choice.

Outboard Rod

B
-_—
B

Torsional ﬁ‘

9 Pinned
Y- BC

Figure 6. The research platform mounted on a test
stand with the leading edge spar model
superimposed on the right wing for clarification.

Figure 7 shows a schematic of the leading edge spar-spine
system. In this figure, 6, is the wing root angle, 6, is the
spine root angle, L; and m, are the length and mass of the
inboard rod, L, and m, are the length and mass of the
outboard rod, and M is motor torque.

Figure 7. Detailed model of the leading edge spar
showing all relevant angles, lengths, and masses.

In the above diagram, 6, is the prescribed wing root angle.
Equation 4 shows the expression for 8, .

0, = %sin(u)t) (4)
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where, ¢ is the wing stroke angle, and w is the flapping
frequency in radians per second.

Using Newton’s principles, one can derive the equations of
motion (EOM) of the two rods shown in Figure 7.
Equations 5 and 6 list the EOM of the system.

IAé'l —kr[8; —6;] + m,¥, ., LicosB, )

—myX, . Lisin; = M

156, + kr[0, —6,]1 =0 (6)

where, I, and Iz are the mass moment of inertia of the
inboard and outboard rods, respectively and X, .., and

¥, .m are the horizontal and vertical accelerations of the
center of mass of the outboard rod, respectively.

Equations 5 and 6 are decoupled since the wing root angle
is prescribed. Therefore, one can solve Equation 6 directly
for the spine root angle (6,). Equation 5 then becomes a
compatibility equation describing the amount of torque the
motor has to produce in order to drive the system at the
prescribed wing root angle (6, ). Matlab’s® general forward
time integration function, ODE45, was used to solve
Equation 6 numerically. Section 3 compares the
analytically calculated wing root and spine root angles
with their experimentally measured counterparts.

3. LEADING EDGE SPAR MODEL VALIDATION
3.1 Experimental Set-up

Experimental data is used to validate the aforementioned
model of the leading edge spar. Details about the
experiment can be found in [11]. The test took place at
NASA Langley Research Center (LaRC) thermal vacuum
laboratory inside a 5 foot x 5 foot thermal vacuum
chamber. The thermal vacuum chamber is capable of
providing a pressure range from atmospheric pressure of
760 Torr to altitude vacuum and thermal simulation of
approximately 10 E-7 Torr. Figures 8a and 8b show the 5’
x 5’ foot thermal vacuum chamber and the test ornithopter
mounted inside the vacuum chamber, respectively.

(b)

Figure 8. a) NASA LaRC 5 foot x 5 foot thermal
vacuum chamber. b) Test ornithopter mounted inside
the vacuum chamber.

In order to capture the deflection, four retro-reflective
markers are placed at the leading edge. One marker is
placed at the wing root, a second one is placed at the
location of the compliant spine root, a third marker is
placed at the location of the compliant spine tip, and a
fourth marker is placed at the wing tip. The kinematics are
captured using a Phantom V9.1 high speed camera at 200
frames per second. The camera is mounted outside of the
vacuum chamber as shown in Figures 8a and 9a. In order
to illuminate the markers for tracking purposes, 3 LED
light panels are mounted on the inside of the vacuum
chamber as shown in Figure 9b. Figure 9c shows a picture
of how the leading edge markers appear when the chamber
door is closed and the LED panels are lit.
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(a) (b)

Leading Edge
Spar Markers

(c)

Figure 9. a) A Phantom high speed camera mounted
outside the vacuum chamber. b) 3 LED panels
mounted on the inside of the chamber to light the
chamber and cause the markers to reflect light. c) A
sample video frame of the leading edge retro
reflective markers when the chamber is closed and
the LED light panels are lit.

3.2 Experimental Validation of Leading Edge Spar

The experiment described in Section 3.1 is conducted
using the same assumptions and constraints used to
develop the model. Thus, the experimental data used is
taken in vacuum at a pressure of 1Torr because the model
does not include aerodynamic effects. The wing-spar
configuration used to validate the model consisted of the
leading edge carbon fiber spar with compliant spine design
Comp 4TL inserted at 37% of the wing half span. Figure
10a shows an example of a wing-spine configuration.
Comp 4TL has an upstroke stiffness (k,,) of 3.75 N-m/rad
and a downstroke stiffness (k;) of 72.5 N-m/rad. Figure
10b shows a schematic of compliant spine design, Comp
ATL. During the experiment, the leading edge of the
ornithopter was flapped at 4.2 Hz. This flapping frequency
is suitable steady level flight.

~ Compliant
' Spine Location

(b)

Figure 10. (a) Example of a leading edge spar-spine
configuration. (b) A schematic of compliant spine
design Comp 4TL.

The vertical displacement of the retro reflective markers is
used to calculate the wing root (6;,,) and spine root
(02¢xp) angles, as shown by Equations 7 and 8.

Ysr — Y
O1exp = sin_l[ = 7 el (7
1
Yor — Y4
Orexp = sin~1 [Yor — Ysg] ®8)
Lspine

where, Y, r, Ysg, and Ys are the vertical displacements of
the wing root, spine root, and spine tip retro reflective
markers respectively. Ly, is the compliant spine length
which is 6.35 cm (2.5”). Figures 11 and 12 compare the
experimental data with the model rasults. The error
between the experimental data and the r.adel is calculated
using Equations 9 and 10.

2
yo(e, —6
RMSE91=\/ 1( 1e;Za 1) ~ 7% 9)
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21(0 —6,)?
RMSEGZZ\/ ! “"r‘: 2 ~11% (10)
where, n is the number of data points used over one
flapping cycle.

The analytical wing root angle agrees within 7 % of the
experimental data while the analytical spine root angle
agrees within 11 % of the experimental data. The error
observed in Figure 11 and Equation 9 is due to the
assumption that the analytical wing root angle is
sinusoidal. Experiment show that the wing root angle is not
exactly sinusoidal. The wings spends more than half of the
stroke below the horizontal plane. The error observed in
Figure 12 and Equation 10 is attributed to the fact that any
physical system has some structural damping, which is not
accounted for in the model. Moreover, the model assumes
that the carbon fiber spar is rigid while the physical carbon
fiber spar has some flexibility. Finally the high frequency
content noticed in the analytical spine root angle is typical
of a bounded response of Mathieu’s equation in which the
ratio between the system’s Figen frequencies and
frequency of excitation (flapping frequency) is small [12].
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Figure 11. Experimental and analytical wing root
angle versus time normalized by the period of one
wing beat cycle. The experiment agrees with the
model within 7%.
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Figure 12. Experimental and analytical spine root
angle versus time normalized by the period of one
wing beat cycle. The experiment agrees with the
model within 11%.

4. STABILITY ANALYSIS

After validating the analytical model using experimental
data as discussed in Section 3, the next step is to determine
the structural stability of the leading edge spar with a
compliant spine inserted in 37% of the wing half span.
Equation 6 can be written in the form of a non-
homogeneous Mathieu’s equation, as shown by Equation
11. Equation 12 through 17 defines the symbols in
Equation 11.

02(p) + [6 + 2e cos(2p)] 6, (p) _ (11)
= [a+ 2B cos(2p)] sin(2p)

AL (12)

- (13)

a= —(p(kaz Z o) (14)

p= o (19)

=1 (16)
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IBT[Z
=z

Mathieu’s equation is a special form of Hill’s equation. It
is used to model parametrically excited system in which a
parameter is varying periodically in a sinusoidal manner
[9, 12, 13]. Several books and articles discuss the
significance, history, and stability of Mathieu’s equation
[13]. The stability of a system written in the form of
Mathieu’s equation can be identified both graphically and
analytically. The most common way to determine the
stability of Mathieu’s equation graphically is using the
Strutt Diagram of the homogenous equation (see Equation
18). The non-homogeneous term on the right hand side of
Equation 11 does not affect stability. A Strutt diagram is a
plot of § versus e and the lines shown on the plot form
boundaries between values of the parameters for which the
solution is stable or unstable. Figure 12 shows the classical
Strutt diagram of Mathieu’s equation.

17)

0,(p) + [ + 2ecos(2p)] B2 (p) = 0 (18)

0 5 10 15 20 25

Figure 13. Classical Strutt diagram for Mathieu’s
equation. The lines form boundaries or transition
point between stable and unstable solution regions.
Regions marked with US are unstable and regions
marked with S are stable.

The Strutt diagram in Figure 13 is in terms of 6 and €. Since
the design parameters for the compliant spine are the
upstroke and downstroke stiffness, it is useful to transform
and plot the Strutt diagram above in terms of k,, and k.
Figure 14 shows the transformed Strutt diagram. The
figure also shows that design Comp 4TL which has an
upstroke of 3.75 Nm/rad and downstroke stiffness of 72.5
Nm/rad, marked in the plot with a black dot, falls within a

stable region of the Strutt diagram. The figure
demonstrates that the leading edge spar with design Comp
4TL is structurally stable.
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Figure 14. Classical Strutt diagram for Mathieu’s
equation. The black dot represents compliant spine
Comp 4TL. Regions marked with US are unstable and
regions marked with S are stable.

Figure 14 demonstrates stability graphically. Stability of
Equation 11 can be also shown analytically by solving for
the system response and examining the phase plane plot.
The phase plane is a plot of the system response (6,)
versus its first derivative (8,). Figure 15 shows the phase
plane plot of Equation 11. The red dot in Figure 15
signifies the initial conditions given to the system. The plot
shows that the response of leading edge spar with design
Comp 4TL inserted at 37% of the wing half span is
bounded and stable.
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0

Figure 15. Phase plane plot of the spine root angle.
The plot shows that the response of the leading edge
spar with design Comp 4TL inserted at 37% of the
wing half span is bounded and stable.

CONCLUSIONS

The work presented in this paper demonstrated that the
leading edge spar remained stable and its response
remained bounded after inserting compliant spine design
Comp 4TL at 37 % of the wing half span. In order to
determine the stability of the spar-spine system, one of the
systems equations of motion is written in Mathieu’s
equation form and the stability of the system is determined
both graphically and analytically. The equations of motion
and system response for a leading edge spar with a
compliant spine mechanism that is designed to mimic the
function of an avian wrist was derived and validated. The
model was validated using bench-top experiments in
vacuum performed at NASA Langley Research Center.
Inserting the compliant spine into the leading edge spar has
previously proved to be beneficial for steady level flight
performance [14-16]. Future work includes confirming the
structural stability of the leading edge spar with other
compliant spine designs.
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