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ABSTRACT 

This paper presents a stability model for the wing leading 

edge spar of a test ornithopter. The long-term goal of this 

research effort is to passively improve the performance of 

ornithopters during steady level flight by implementing a 

set of wing kinematics found in natural flyers. The desired 

kinematics is achieved by inserting a compliant 

mechanism called a compliant spine into the wing leading 

edge spar to mimic the function of an avian wrist. The 

stiffness of the compliant spine is time varying and given 

the nature of flapping flight, it is periodic. Introducing a 

variable stiffness compliant mechanism into the leading 

edge spar of the ornithopter affects its structural stability. 

Therefore, a stability analysis is required.  In order to start 

the stability analysis, an analytical model of the ornithopter 

wing leading edge spar with a compliant spine inserted in 

is necessary. In the model, the compliant spine is modeled 

as a torsional spring with a sinusoidal stiffness function. 

Moreover, the equations of motion of the wing leading 

edge spar-spine system can be written in the form of non-

homogeneous Mathieu’s equations, which has well-known 

stability criteria. The analytical system response is then 

validated using experimental data taken at NASA Langley 

Research Center. Results show that the analytical spine 

angular deflection agrees with the experimental angular 

deflection data within 11%. Stability was then 

demonstrated using both analytical and graphical proving 

that the response of leading edge spar with a compliant 

spine design inserted at 37% of the wing half span is 

bounded.   

I. INTRODUCTION 

During the last few decades, flapping wing Unmanned 

Aerial Vehicles (UAVs), or ornithopters, have shown the 

potential for advancing and revolutionizing UAV 

performance in both the civil and military sectors[1]. An 

ornithopter is unique in that it can combine the agility and 

maneuverability of rotary wing aircraft with excellent 

performance in low Reynolds number flight regimes. 

These traits could yield optimized performance over 

multiple mission scenarios. Nature achieves such 

performance in birds using wing gaits that are optimized 

for a particular flight condition [2],[3]. The desired bio-

inspired kinematics that we want to implement on a test 

ornithopter to improve steady level flight is known as the 

Continuous Vortex Gait (CVG). A detailed discussion of 

the kinematics of the CVG can be found in [2] and [3]. The 

advantage of using the CVG is that it is an avian gait that 

can be implemented passively and requires motion in only 

one major joint, namely the wrist.  The desired bending 

kinematics of the CVG can be achieved by inserting a 

contact-aided compliant mechanism called a compliant 
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spine into the wing leading edge spar to mimic the function 

of an avian wrist. The compliant spine is inserted in the 

leading edge spar of the test ornithopter wings at 37% of 

the wing half span, as shown in Figure 1. The compliant 

spine is designed to be flexible during the upstroke, while 

remaining stiff during the downstroke, as shown in Figure 

2. References 4, 5, and 6 detail the design optimization of 

the compliant spine. The stiffness of the compliant spine is 

time varying and, given the nature of steady-level flapping 

flight, it is also periodic.  Introducing a variable stiffness 

compliant mechanism into the leading edge spar of the 

ornithopter affects its structural stability. A stability 

analysis is thus required [7, 8]. 

 

Figure 1. The compliant spine is inserted into the 
leading edge spar to mimic the function of an avian 

wrist. 

 

Figure 2. The desired stiffness of the compliant spine 
is nonlinear.  It is stiff in the downstroke, similar to a 
rigid spar, and flexible in the upstroke, similar to a 

torsional spring. 

This paper presents a structural stability model for the wing 

leading edge spar of a test ornithopter. Modeling the wing 

leading edge spar with a compliant spine inserted in it 

yields linear time periodic equations of motion in the form 

of non-homogeneous Mathieu’s equations. The model uses 

Floquet’s decomposition [8, 9] to determine the stability of 

the leading edge (LE) spar using graphical and analytical 

methods with various compliant spine designs inserted in 

it. The remainder of the paper is organized as follows: 

Section 2 presents the equations of motion for the leading 

edge spar, Section 3 explains the experimental validation 

for the model, Section 4 discusses the stability analysis, 

and Section 5 includes conclusions and future work.  

2. LEADING EDGE SPAR EQUATIONS OF 
MOTION 

2.1 Research Platform Specifications 

The leading edge spar modeled in this paper is the main 

spar of an avian scale flapping wing un-manned air vehicle. 

Figure 3 shows a picture of the research platform and Table 

1 includes the specifications [10]. The ornithopter wings 

consist of the leading edge spar, a wing membrane, a 

diagonal spar and five finger spars as shown in Figure 4.  

The leading edge spar is the spar connected to the wing 

root and the flapping mechanism. It is a unidirectional 

carbon fiber rod with a 3.96 m diameter. 

 

Figure 3. Test Platform  

 

Table 1.  Ornithopter specification that are common 
across all configurations 

Specification Value 

Span 1.07 m 

Flapping Rate 4 – 6 Hz 

Speed 2.5 - 8.5 m/s 

Max. Chord 0.28 m 

Range 0.8 km 

Wing Stroke Angle 1.17 rad 
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Figure 4: Top view of the research platform wings with its 

components labeled.  

The compliant spine is designed to mimic the function of 

an avian wrist, thus it is inserted in the leading edge. The 

compliant spine is attached to the carbon fiber spar using 

six 5-40 bolts and a Delrin collar, as shown in Figure 5.  

 

Figure 5.  Compliant spine assembly components 

 

2.2 Leading Edge Spar Model 

The leading edge spar is modeled as two rigid rods. One 

rod is inboard to the compliant spine and the other is 

outboard to the compliant spine. The boundary conditions 

for these rods are shown in Figure 6. The inboard rod has 

a pinned boundary condition at the root and is connected 

to the torsional spring on the other end.  The outboard rod 

has a free boundary condition at the wing tip and is 

connected to the torsional spring on one end. The 

compliant spine is modeled as a torsional spring with a 

sinusoidal stiffness function. The torsional stiffness of the 

spring representing the compliant spine is described as:  

kT = (ka + kb) − kbcos⁡(
2πt

T
) (1) 

where, 

ka =⁡ku (2) 

kb =
kd − ku

2
 (3) 

In the equations above,  𝑘𝑢 and 𝑘𝑑 ⁡are the upstroke and 

downstroke stiffness of the compliant spine in Newton- 

meter per radian, respectively, 𝑡⁡is time in seconds, and 𝑇 

is the period of one wing beat cycle. The values of 𝑘𝑢 and 

𝑘𝑑 ⁡are determined based on the compliant spine design 

choice.  

 

Figure 6. The research platform mounted on a test 
stand with the leading edge spar model 

superimposed on the right wing for clarification.  

Figure 7 shows a schematic of the leading edge spar-spine 

system. In this figure, 𝜃1 is the wing root angle, 𝜃2⁡is the 

spine root angle, 𝐿1 and 𝑚1 are the length and mass of the 

inboard rod, 𝐿2 and 𝑚2 are the length and mass of the 

outboard rod, and M is motor torque. 

 

Figure 7. Detailed model of the leading edge spar 
showing all relevant angles, lengths, and masses.  

In the above diagram, 𝜃1 is the prescribed wing root angle. 

Equation 4 shows the expression for 𝜃1 .  

θ1 =
φ

2
sin(ωt) (4) 
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where, 𝜑 is the wing stroke angle, and 𝜔 is the flapping 

frequency in radians per second.  

Using Newton’s principles, one can derive the equations of 

motion (EOM) of the two rods shown in Figure 7. 

Equations 5 and 6 list the EOM of the system.  

⁡⁡IAθ1̈ − kT[θ2 − θ1] +⁡m2ÿ2 c.m.L1cosθ1
−m2ẍ2 c.m.L1sinθ1 = M 

(5) 

IBθ2̈ + kT[θ2 − θ1] = 0                                                                                   (6) 

where, 𝐼𝐴 and 𝐼𝐵 are the mass moment of inertia of the 

inboard and outboard rods, respectively and 𝑥̈2 𝑐.𝑚. and 

𝑦̈2 𝑐.𝑚. are the horizontal and vertical accelerations of the 

center of mass of the outboard rod, respectively.  

Equations 5 and 6 are decoupled since the wing root angle 

is prescribed. Therefore, one can solve Equation 6 directly 

for the spine root angle (𝜃2). Equation 5 then becomes a 

compatibility equation describing the amount of torque the 

motor has to produce in order to drive the system at the 

prescribed wing root angle (𝜃1). Matlab’s® general forward 

time integration function, ODE45, was used to solve 

Equation 6 numerically. Section 3 compares the 

analytically calculated wing root and spine root angles 

with their experimentally measured counterparts.    

3. LEADING EDGE SPAR MODEL VALIDATION 

3.1 Experimental Set-up 

Experimental data is used to validate the aforementioned 

model of the leading edge spar. Details about the 

experiment can be found in [11]. The test took place at 

NASA Langley Research Center (LaRC) thermal vacuum 

laboratory inside a 5 foot x 5 foot thermal vacuum 

chamber. The thermal vacuum chamber is capable of 

providing a pressure range from atmospheric pressure of 

760 Torr to altitude vacuum and thermal simulation of 

approximately 10 E-7 Torr. Figures 8a and 8b show the 5’ 

x 5’ foot thermal vacuum chamber and the test ornithopter 

mounted inside the vacuum chamber, respectively. 

 

(a) 

 

(b) 

Figure 8. a) NASA LaRC 5 foot x 5 foot thermal 
vacuum chamber. b) Test ornithopter mounted inside 

the vacuum chamber. 

 In order to capture the deflection, four retro-reflective 

markers are placed at the leading edge. One marker is 

placed at the wing root, a second one is placed at the 

location of the compliant spine root, a third marker is 

placed at the location of the compliant spine tip, and a 

fourth marker is placed at the wing tip. The kinematics are 

captured using a Phantom V9.1 high speed camera at 200 

frames per second. The camera is mounted outside of the 

vacuum chamber as shown in Figures 8a and 9a. In order 

to illuminate the markers for tracking purposes, 3 LED 

light panels are mounted on the inside of the vacuum 

chamber as shown in Figure 9b. Figure 9c shows a picture 

of how the leading edge markers appear when the chamber 

door is closed and the LED panels are lit. 
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(a)                             (b) 

 

(c) 

Figure 9. a) A Phantom high speed camera mounted 
outside the vacuum chamber. b) 3 LED panels 

mounted on the inside of the chamber to light the 
chamber and cause the markers to reflect light. c) A 

sample video frame of the leading edge retro 
reflective markers when the chamber is closed and 

the LED light panels are lit. 

3.2 Experimental Validation of Leading Edge Spar 

The experiment described in Section 3.1 is conducted 

using the same assumptions and constraints used to 

develop the model. Thus, the experimental data used is 

taken in vacuum at a pressure of 1Torr because the model 

does not include aerodynamic effects. The wing-spar 

configuration used to validate the model consisted of the 

leading edge carbon fiber spar with compliant spine design 

Comp 4TL inserted at 37% of the wing half span.  Figure 

10a shows an example of a wing-spine configuration. 

Comp 4TL has an upstroke stiffness (𝑘𝑢) of 3.75 N-m/rad 

and a downstroke stiffness (𝑘𝑑) of 72.5 N-m/rad. Figure 

10b shows a schematic of compliant spine design, Comp 

4TL. During the experiment, the leading edge of the 

ornithopter was flapped at 4.2 Hz. This flapping frequency 

is suitable steady level flight.  

 

(a) 

 

(b) 

Figure 10. (a) Example of a leading edge spar-spine 
configuration. (b) A schematic of compliant spine 

design Comp 4TL. 

The vertical displacement of the retro reflective markers is 

used to calculate the wing root (𝜃1𝑒𝑥𝑝) and spine root 

(𝜃2𝑒𝑥𝑝) angles, as shown by Equations 7 and 8.  

𝜃1𝑒𝑥𝑝 = sin−1
[𝑌𝑆𝑅 − 𝑌𝑊𝑅]

𝐿1
 (7) 

𝜃2𝑒𝑥𝑝 = sin−1
[𝑌𝑆𝑇 − 𝑌𝑆𝑅]

𝐿𝑠𝑝𝑖𝑛𝑒
 (8) 

where,⁡𝑌𝑊𝑅,⁡𝑌𝑆𝑅, and ⁡𝑌𝑆𝑇 are the vertical displacements of 

the wing root, spine root, and spine tip retro reflective 

markers respectively.  𝐿𝑠𝑝𝑖𝑛𝑒 is the compliant spine length 

which is 6.35 cm (2.5”). Figures 11 and 12 compare the 

experimental data with the model results. The error 

between the experimental data and the model is calculated 

using Equations 9 and 10.  

𝑅𝑀𝑆𝐸𝜃1 =
√∑ (𝜃1 𝑒𝑥𝑝 − 𝜃1 )

2
𝑛
1

𝑛
≈ 7⁡%  (9) 

LED 

Light 

panels 

Camera 

 Lens 

Leading Edge 

 Spar Markers 

Compliant 

Spine Location 
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RMSEθ2 =
√
∑ (θ2 exp − θ2 )

2n
1

n
≈ 11 % (10) 

where, n is the number of data points used over one 

flapping cycle. 

The analytical wing root angle agrees within 7 % of the 

experimental data while the analytical spine root angle 

agrees within 11 % of the experimental data.  The error 

observed in Figure 11 and Equation 9 is due to the 

assumption that the analytical wing root angle is 

sinusoidal. Experiment show that the wing root angle is not 

exactly sinusoidal. The wings spends more than half of the 

stroke below the horizontal plane. The error observed in 

Figure 12 and Equation 10 is attributed to the fact that any 

physical system has some structural damping, which is not 

accounted for in the model. Moreover, the model assumes 

that the carbon fiber spar is rigid while the physical carbon 

fiber spar has some flexibility. Finally the high frequency 

content noticed in the analytical spine root angle is typical 

of a bounded response of Mathieu’s equation in which the 

ratio between the system’s Eigen frequencies and 

frequency of excitation (flapping frequency) is small [12].  

 

Figure 11. Experimental and analytical wing root 
angle versus time normalized by the period of one 
wing beat cycle. The experiment agrees with the 

model within 7%. 

 

Figure 12. Experimental and analytical spine root 
angle versus time normalized by the period of one 
wing beat cycle. The experiment agrees with the 

model within 11%. 

4. STABILITY ANALYSIS 

After validating the analytical model using experimental 

data as discussed in Section 3, the next step is to determine 

the structural stability of the leading edge spar with a 

compliant spine inserted in 37% of the wing half span. 

Equation 6 can be written in the form of a non-

homogeneous Mathieu’s equation, as shown by Equation 

11. Equation 12 through 17 defines the symbols in 

Equation 11.   

θ̈2(p) + [δ + 2ϵ cos(2p)] θ2(p)

= [α + 2β cos(2p)] sin⁡(2p) 
(11) 

δ =
ka + kb

A
 (12) 

ϵ =
−kb
2A

 (13) 

α =
φ(ka + kb)

2A
 (14) 

β =
−φkb
4A

 (15) 

p =
πt

T
 (16) 
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A =
IBπ

2

T2
 (17) 

Mathieu’s equation is a special form of Hill’s equation. It 

is used to model parametrically excited system in which a 

parameter is varying periodically in a sinusoidal manner 

[9, 12, 13]. Several books and articles discuss the 

significance, history, and stability of Mathieu’s equation 

[13].  The stability of a system written in the form of 

Mathieu’s equation can be identified both graphically and 

analytically.  The most common way to determine the 

stability of Mathieu’s equation graphically is using the 

Strutt Diagram of the homogenous equation (see Equation 

18). The non-homogeneous term on the right hand side of 

Equation 11 does not affect stability. A Strutt diagram is a 

plot of δ versus ϵ and the lines shown on the plot form 

boundaries between values of the parameters for which the 

solution is stable or unstable. Figure 12 shows the classical 

Strutt diagram of Mathieu’s equation. 

θ̈2(p) + [δ + 2ϵ cos(2p)] θ2(p) = 0 (18) 

Figure 13. Classical Strutt diagram for Mathieu’s 
equation. The lines form boundaries or transition 

point between stable and unstable solution regions. 
Regions marked with US are unstable and regions 

marked with S are stable.  

The Strutt diagram in Figure 13 is in terms of δ and ϵ. Since 

the design parameters for the compliant spine are the 

upstroke and downstroke stiffness, it is useful to transform 

and plot the Strutt diagram above in terms of 𝑘𝑢 and 𝑘𝑑. 

Figure 14 shows the transformed Strutt diagram. The 

figure also shows that design Comp 4TL which has an 

upstroke of 3.75 Nm/rad and downstroke stiffness of 72.5 

Nm/rad, marked in the plot with a black dot, falls within a 

stable region of the Strutt diagram. The figure 

demonstrates that the leading edge spar with design Comp 

4TL is structurally stable.  

 

Figure 14. Classical Strutt diagram for Mathieu’s 
equation. The black dot represents compliant spine 

Comp 4TL. Regions marked with US are unstable and 
regions marked with S are stable.  

Figure 14 demonstrates stability graphically. Stability of 

Equation 11 can be also shown analytically by solving for 

the system response and examining the phase plane plot. 

The phase plane is a plot of the system response (θ2) 

versus its first derivative (θ̇2). Figure 15 shows the phase 

plane plot of Equation 11. The red dot in Figure 15 

signifies the initial conditions given to the system. The plot 

shows that the response of leading edge spar with design 

Comp 4TL inserted at 37% of the wing half span is 

bounded and stable.  
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Figure 15. Phase plane plot of the spine root angle. 
The plot shows that the response of the leading edge 

spar with design Comp 4TL inserted at 37% of the 
wing half span is bounded and stable.  

CONCLUSIONS 

The work presented in this paper demonstrated that the 

leading edge spar remained stable and its response 

remained bounded after inserting compliant spine design 

Comp 4TL at 37 % of the wing half span. In order to 

determine the stability of the spar-spine system, one of the 

systems equations of motion is written in Mathieu’s 

equation form and the stability of the system is determined 

both graphically and analytically. The equations of motion 

and system response for a leading edge spar with a 

compliant spine mechanism that is designed to mimic the 

function of an avian wrist was derived and validated. The 

model was validated using bench-top experiments in 

vacuum performed at NASA Langley Research Center. 

Inserting the compliant spine into the leading edge spar has 

previously proved to be beneficial for steady level flight 

performance [14-16]. Future work includes confirming the 

structural stability of the leading edge spar with other 

compliant spine designs.  
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